Aluminum based nanogalvanic alloys refer to a class of nanostructured metal powders that spontaneously and rapidly produce oxygen and hydrogen gas upon contact with water or any liquid containing water. This method of hydrogen generation is notable in the field of energy research due to its fast-acting capacity to efficiently create hydrogen at room temperature without the need for any chemicals, catalysts, or externally supplied power.
Overview
When aluminum makes contact with water, hydrogen gas is produced as a result of hydrolysis. However, at the same time, water oxidizes the aluminum and causes a thin protective layer of aluminum oxide to rapidly form on the surface of the metal, preventing further hydrolysis. In order for the aluminum to continuously produce hydrogen gas, scientists had to forcefully remove or at least fracture the aluminum oxide layer, typically dissolving it in water with the help of hazardous compounds such as hydrochloric acid, sodium hydroxide, or expensive elements such as gallium/indium. Other methods apply external energy in the form of an electric current or superheated steam to slowly force the...