«By studying these inward-looking questions, researchers have learned that the hardness of proving computational hardness is intimately tied to fundamental questions that may at first seem unrelated. How hard is it to spot hidden patterns in apparently random data? And if truly hard problems do exist, how often are they hard?
“It’s become clear that meta-complexity is close to the heart of things,” said Scott Aaronson, a complexity theorist at the University of Texas, Austin.
This is the story of the long and winding trail that led researchers from the P versus NP problem to meta-complexity. It hasn’t been an easy journey — the path is littered with false turns and roadblocks, and it loops back on itself again and again. Yet for meta-complexity researchers, that journey into an uncharted landscape is its own reward. Start asking seemingly simple questions, said Valentine Kabanets, a complexity theorist at Simon Fraser University in Canada, and “you have no idea where you’re going to go.”»