\displaystyle \left(\left(\frac{x}{7}\right)^2 \cdot \sqrt{\frac{||x|-3|}{(|x|-3)}}+ \left(\frac{y}{3}\right)^2 \cdot \sqrt{\frac{|y+3 \cdot \frac{\sqrt{33}}{7}|}{y+3 \cdot \frac{\sqrt{33}}{7}}}-1\right) \cdot (|\frac{x}{2}|-\left(\left(3 \cdot \frac{\sqrt{33}-7}{112}\right) \cdot x^2-3+\sqrt{1-\left(||x|-2|-1\right)^2}-y\right) \cdot \left(9 \cdot \sqrt{\frac{|\left(|x|-1\right) \cdot \left(|x|-0.75\right)|}{\left(\left(1-|x|\right)*\left(|x|-0.75\right)\right)}}-8 \cdot |x|-y\right) \cdot \left(3 \cdot |x|+0.75 \cdot \sqrt{\frac{|(|x|-0.75) \cdot (|x|-0.5)|}{((0.75-|x|) \cdot (|x|-0.5))}}-y\right) \cdot \left(2.25 \cdot \sqrt{\frac{|(x-0.5) \cdot (x+0.5)|}{((0.5-x) \cdot (0.5+x))}}-y\right) \cdot \left(\frac{6 \cdot \sqrt{10}}{7}+\left(1.5-0.5 \cdot |x|\right) \cdot \sqrt{\frac{||x|-1|}{|x|-1}}-\left(\frac{6 \cdot \sqrt{10}}{14}\right) \cdot \sqrt{4-\left(|x|-1\right)^2}-y\right) = 0