The total number of gifts give to you by your true love up to and including the 𝑛th day of Christmas is
\( \frac{n (n + 1) (n + 2)}{6} \)
Conversation
Notices
-
Embed this notice
julesh (julesh@mathstodon.xyz)'s status on Wednesday, 25-Dec-2024 19:34:27 JST julesh -
Embed this notice
julesh (julesh@mathstodon.xyz)'s status on Wednesday, 25-Dec-2024 19:44:40 JST julesh If you take the total number of gifts given to you by your true love up to an including the 𝑛th day of Christmas and then double it, you get the sum of squares of eigenvalues of the spin operator for a spin-𝑛/2 particle
In conversation permalink -
Embed this notice
julesh (julesh@mathstodon.xyz)'s status on Wednesday, 25-Dec-2024 19:51:11 JST julesh Here is a funny Haskell implementation:
ghci> let foo n = sum [p*q | p <- [0..n], q <- [0..n], p + q == n + 1]In conversation permalink Attachments
-
Embed this notice
scmbradley (scmbradley@mathstodon.xyz)'s status on Wednesday, 25-Dec-2024 19:53:35 JST scmbradley @julesh fiiive gooold sets equipped with two binary operations such that (etc etc)
In conversation permalink -
Embed this notice
julesh (julesh@mathstodon.xyz)'s status on Wednesday, 25-Dec-2024 20:20:08 JST julesh Quick calculation of the total number of gifts your true love has sent to you by Twelfth Night:
12 drummers drumming
22 pipers piping
30 lords a-leaping
36 ladies dancing
40 maids a-milking
42 swans a-swimming
42 geese a-laying
40 goooooooold riiiiiiiings
36 calling birds
30 French hens
22 turtle doves
and 12 partridges in 12 pear treesfor a grand total of 364 gifts (or 376 if you count the pear trees separately)
In conversation permalink
-
Embed this notice